Consortium Standards and Patent Pooling

Reiko Aoki Hitotsubashi University

Seminar on "Standards and Intellectual Property Rights" GRIPS, October 10, 2009

Overview

- Lessons from Standard Consortiums
 - Free Riding
 - Bargaining Failure
- Patent Pools and Innovation
 - Upstream and downstream
 - Upstream = technology in the patent pools
 - Downstream = uses patent pools technology

Evidence from Standard Consortiums

- Members leaving
 - Rambus left JEDEC and now suing members
- Patent owner does not join the pool,licenses independently and charges "high" royalty

 Forgent sues firms over JPEG patents
- DVD consortium split into 3 patent pools
- 3G platform
 - 5 standards
 - Qualcom, Nokia, Eriscson not a member of any

Why is a Pool Not Stable?

- Welfare is greater when there is one single patent pool
 - Competition authorities supportive
- Source of instability
 - Free riding by non-members
 - <u>Bargaining failure</u> due to heterogeneous membership

Example

- Demand for license depends on total royalty payment (licensing fee)
- Higher royalty means fewer demand for licenses
- Q = 60 r
 - Q is number of licenses demanded
 - r is total royalty payment
 - If all patentees in one pool , then r is pool's rate
 - If there are multiple licensees, then r is sum of all rates

There are three firms, A, B and C

- Single licensor
 - <u>All three</u> firms form a pool
- Independent licensing
 - There are three licensor
- Firm C is an outsider
 - Only firms A and B form a pool
 - There are two licensors (pool and a firm)

Each licensor (pool or firm) sets royalty to maximize own revenue

- If there are <u>3 licensors</u>
 - Firm A charges r_A
 - Total royalty payment is $r_A + r_B + r_C$
 - Firm A's revenue (60 $r_A r_B r_C$) x r_A
- If there is <u>one licensor</u> (pool)
 - Pool charges r
 - Total royalty payment is r
 - Pool's revenue (60 r) x r

Incentives

- Raising royalty reduces number of licenses
- <u>A's revenue</u> hurt by <u>B and C's royalty</u> rate
 Better to have fewer rivals
- A does not take into account reduction of <u>B and C's revenue</u>
 - Each firm independently sets royalty too high

Optimal Royalty and Revenue

	No. of	Each Licensor	Total	Each Licensor
Regime	Licensors	Royalty	Royalty	Revenue
One Patent				30X30=
Pool	1	30	30	900
Firm C is			20 x 2=	20X20=
Outsider	2	20	40	400
Independent			15 x 3=	15X15=
Licensing	3	15	45	225

Optimal Royalty and Revenue

	No. of	Each Licensor	Total	Each Licensor
Regime	Licensors	Royalty	Royalty	Revenue
One Patent				30X30=
Pool	1	30	30	900
Firm C is			20 x 2=	20X20=
Outsider	2	20	40	400
Independent			15 x 3=	15X15=
Licensing	3	15	45	225

Each Firm's Revenue

Regime	Each Licensor Revenue	Each Firm Revenue
One Patent		
Pool	900	900/3 = 300 > 225
Firm C is		400/2 = 200 pool member
Outsider	400	400 outsider > 300
Independent		
Licensing	225	225

Each Firm's Revenue

Regime	Each Licensor Revenue	Each Firm Revenue
One Patent		
Pool	900	900/3 = <mark>300</mark> > 225
Firm C is		400/2 = 200 pool member
Outsider	400	400 outsider > 300
Independent		
Licensing	225	225

Free Riding

- C is better off being an outsider than being a member of a pool
- Incentive to free ride
 - Good to have all other firms in a single pool
 Better not to join
- Agree to a pool in principle and not join
- Leave the pool after formation
- Benefit increases with number of firms

Possible Solutions

- 400 + 200 + 200 < 900
- Pool members are better off having firm C join the pool
 - Pay 400 to firm C
- Independent licensing is bad for everyone

 Use this as a <u>threat</u> to make members
 commit to the pool

Bargaining Failure

- Forgent and Rambus are not manufacturers
- Research only firms (R-firms) and vertically integrated (V-firms) have <u>different incentive</u>
 - V-firms both conduct research and manufacture
- But pool revenue distributed according to number of patents

Different Profit and Incentives

- R-firm
 - Profit ($\pi_{\rm R}$) is only licensing revenue
- V-firm
 - Profit (π_v)
 - = <u>Licensing revenue + manufacturing profit</u>
 - Manufacturing profit decreasing in royalty rate
 - Wants royalty lower than R-firm

Patent Pool Licensing Frontier

- Plot of V-firm and R-firm profits with different patent pool royalty rates (r)
- Pool revenue distributed according to number of patents (in this example equal number of patents)
- r=0 : no pool revenue, good for manufacturing
- Higher r decreases licenses and output

Figure 1: Patent Pool Frontier

Standards and Patent Pools

 π_R

Possible Profit Allocations

- Revenue Maximizing Point = pool revenue maximized
- Profit Maximizing Point = total firm profits maximized (r lower than Revenue Max)
- Independent Licensing Point = Firms license independently

Figure 2: Patent Pool Frontier

Standards and Patent Pools

 π_R

Bargaining Failure

- Independent Licensing is <u>outside</u> the frontier
- <u>Not achievable</u> by current pool revenue sharing rule
- Pool revenue sharing rule must incorporate Independent Licensing into account
- <u>Benefit</u> from Independent Licensing is <u>different</u> between R and V firms.

Possible Solutions

- Total profit is larger with Revenue Maximizing than Independent Licensing
- R-firm must be <u>guaranteed at least</u> Independent Licensing profit

- <u>Bargaining</u> than per patent distribution rule

 <u>Total profit is larger</u> even larger with <u>Profit</u> <u>Maximizing</u>

– Form pool, Profit Maximize and bargain

Nash Bargaining Solution

- Profit maximizing line is <u>bargaining frontier</u>
 - Best possible profits by firms cooperating
 - Best achievable only by forming a pool
- <u>Disagreement point</u> (threat point) is Independent Licensing
- Nash Bargaining Solution <u>splits the</u> <u>surplus from cooperating</u> (difference between frontier and disagreement point)

Figure 2: Nash Bargaining Solution

 π_R

Conclusion

- Patent pool is appealing in theory
- Problems in implementation (also theoretically sound !)
 - Free riding
 - Incentive to not join or leave the pool
 - Wants everyone else to form a pool
 - Bargaining failure
 - Heterogeneous membership
 - Revenues sharing should be negotiable

Patent Pools and Innovation

Problem:

- Downstream innovation or product development may require licensing multiple upstream technologies with multiple owners ⇒ high transaction costs and 'tragedy of the anticommons'.
- Example: Standard implementing patents, Genetic diagnostic tests

Possible solutions:

- Patent Pools
- Cross-licensing
- Compulsory licensing
- Research exemptions
- Open source

Patent Pools and Innovation

Problem:

- Downstream innovation or product development may require licensing multiple upstream technologies with multiple owners ⇒ high transaction costs and 'tragedy of the anticommons'.
- Example: Standard implementing patents, Genetic diagnostic tests
- Possible solutions:
 - Patent Pools
 - Cross-licensing
 - Compulsory licensing
 - Research exemptions
 - Open source

Upstream vs Downstream Innovation

Upstream and Downstream Innovation

Upstream vs Downstream

Upstream and Downstream Innovation

Examine effects of PP on upstream incentives to innovate

- PP of complementary intellectual property
 - Standard implementing patent pools
 - DNA microarrays
- Specifically, we examine how PPs effect
 - Ex-post (after upstream innovation) licensing
 - Ex-ante incentives to invest in upstream research.
- Compare different PP licensing revenue (royalty) distribution rules.
- Incorporate the effect of simple antitrust rules.

- Examine effects of PP on upstream incentives to innovate
- PP of complementary intellectual property
 - Standard implementing patent pools
 - DNA microarrays
- Specifically, we examine how PPs effect
 - Ex-post (after upstream innovation) licensing
 - Ex-ante incentives to invest in upstream research.
- Compare different PP licensing revenue (royalty) distribution rules.
- Incorporate the effect of simple antitrust rules.

- Examine effects of PP on upstream incentives to innovate
- PP of complementary intellectual property
 - Standard implementing patent pools
 - DNA microarrays
- Specifically, we examine how PPs effect
 - Ex-post (after upstream innovation) licensing
 - Ex-ante incentives to invest in upstream research.
- Compare different PP licensing revenue (royalty) distribution rules.
- Incorporate the effect of simple antitrust rules.

- Examine effects of PP on upstream incentives to innovate
- PP of complementary intellectual property
 - Standard implementing patent pools
 - DNA microarrays
- Specifically, we examine how PPs effect
 - Ex-post (after upstream innovation) licensing
 - Ex-ante incentives to invest in upstream research.
- Compare different PP licensing revenue (royalty) distribution rules.
- Incorporate the effect of simple antitrust rules.

Analysis - Factors to Consider

- Licensing by the PP must be optimal ex-post (after upstream innovation) given the ex-post outcome of innovation (market structure)
 - Maximize joint profit
 - Induce IP owners to rationally join
- R&D incentive determined by ex-ante expected profit
- Ex-ante expected profit depends on ex-post profit and R&D technology (probability distribution over outcomes)
 - Ex-post optimal royalty distribution rule may not provide right incentives ex-ante
 - Expected profit depends on number of firms investing (ex-ante market structure)
 - Firms differ: Some firms are competitors (substitute technologies) and some are partners (complementary technologies)

Analysis - Factors to Consider

- Licensing by the PP must be optimal ex-post (after upstream innovation) given the ex-post outcome of innovation (market structure)
 - Maximize joint profit
 - Induce IP owners to rationally join
- R&D incentive determined by ex-ante expected profit
- Ex-ante expected profit depends on ex-post profit and R&D technology (probability distribution over outcomes)
 - Ex-post optimal royalty distribution rule may not provide right incentives ex-ante
 - Expected profit depends on number of firms investing (ex-ante market structure)
 - Firms differ: Some firms are competitors (substitute technologies) and some are partners (complementary technologies)

Analysis - Factors to Consider

- Licensing by the PP must be optimal ex-post (after upstream innovation) given the ex-post outcome of innovation (market structure)
 - Maximize joint profit
 - Induce IP owners to rationally join
- R&D incentive determined by ex-ante expected profit
- Ex-ante expected profit depends on ex-post profit and R&D technology (probability distribution over outcomes)
 - Ex-post optimal royalty distribution rule may not provide right incentives ex-ante
 - Expected profit depends on number of firms investing (ex-ante market structure)
 - Firms differ: Some firms are competitors (substitute technologies) and some are partners (complementary technologies)
- In general, PPs stimulate upstream R&D investment
 - But PPs may hurt the incentive of an inventor with unique ability (ex-ante monopoly, firms ex-ante asymmetric)
 - PP dilutes rent
 - And incentives to invest may be socially excessive
- PP that distributes licensing revenue unequally among its members is less likely to lead to welfare loss
 - Unequal distribution helps form PP
 - Even if inventors are symmetric ex-ante, ex-post asymmetries may emerge
- ▶ Firm's profit ranking over different PP rules differs ex-ante or ex-post and by firm (monopolist or not) ⇒ likely to lead to disagreement over PP rules and formation
- Implication: Determination of PP rules (revenue distribution, antitrust) should take into account R&D technology

- In general, PPs stimulate upstream R&D investment
 - But PPs may hurt the incentive of an inventor with unique ability (ex-ante monopoly, firms ex-ante asymmetric)
 - PP dilutes rent
 - And incentives to invest may be socially excessive
- PP that distributes licensing revenue unequally among its members is less likely to lead to welfare loss
 - Unequal distribution helps form PP
 - Even if inventors are symmetric ex-ante, ex-post asymmetries may emerge
- ▶ Firm's profit ranking over different PP rules differs ex-ante or ex-post and by firm (monopolist or not) ⇒ likely to lead to disagreement over PP rules and formation
- Implication: Determination of PP rules (revenue distribution, antitrust) should take into account R&D technology

- In general, PPs stimulate upstream R&D investment
 - But PPs may hurt the incentive of an inventor with unique ability (ex-ante monopoly, firms ex-ante asymmetric)
 - PP dilutes rent
 - And incentives to invest may be socially excessive
- PP that distributes licensing revenue unequally among its members is less likely to lead to welfare loss
 - Unequal distribution helps form PP
 - Even if inventors are symmetric ex-ante, ex-post asymmetries may emerge
- ► Firm's profit ranking over different PP rules differs ex-ante or ex-post and by firm (monopolist or not) ⇒ likely to lead to disagreement over PP rules and formation
- Implication: Determination of PP rules (revenue distribution, antitrust) should take into account R&D technology

- In general, PPs stimulate upstream R&D investment
 - But PPs may hurt the incentive of an inventor with unique ability (ex-ante monopoly, firms ex-ante asymmetric)
 - PP dilutes rent
 - And incentives to invest may be socially excessive
- PP that distributes licensing revenue unequally among its members is less likely to lead to welfare loss
 - Unequal distribution helps form PP
 - Even if inventors are symmetric ex-ante, ex-post asymmetries may emerge
- ► Firm's profit ranking over different PP rules differs ex-ante or ex-post and by firm (monopolist or not) ⇒ likely to lead to disagreement over PP rules and formation
- Implication: Determination of PP rules (revenue distribution, antitrust) should take into account R&D technology

Framework

- New downstream product needs two complementary upstream innovations: A and B.
- ► Large number of competitive upstream research firms:
 - Each has capacity for one research 'project' at cost c
 - Specialized in development of A or B
 - Revenues only from licensing
- Each firm either independently succeeds or fails (probabilistic).
- All successful projects (= patent) of a single component result in perfect substitutes.
- ► PP
 - Licenses on behalf of successful inventors who choose to join.
 - Objective is to maximize joint royalty revenues of its members.

Framework

- New downstream product needs two complementary upstream innovations: A and B.
- Large number of competitive upstream research firms:
 - Each has capacity for one research 'project' at cost c
 - Specialized in development of A or B
 - Revenues only from licensing
- Each firm either independently succeeds or fails (probabilistic).
- All successful projects (= patent) of a single component result in perfect substitutes.
- ► PP
 - Licenses on behalf of successful inventors who choose to join.
 - Objective is to maximize joint royalty revenues of its members.

Framework

- New downstream product needs two complementary upstream innovations: A and B.
- Large number of competitive upstream research firms:
 - Each has capacity for one research 'project' at cost c
 - Specialized in development of A or B
 - Revenues only from licensing
- Each firm either independently succeeds or fails (probabilistic).
- All successful projects (= patent) of a single component result in perfect substitutes.
- ► PP
 - Licenses on behalf of successful inventors who choose to join.
 - Objective is to maximize joint royalty revenues of its members.

Innovation and licensing takes place in four stages:

- I. The antitrust rule is set and announced: Is the PP allowed to jointly license substitute innovations or not?
- II. The PP sets and announces a royalty redistribution rule consistent with the anti-trust rule.
- III. Each research firm decides to invest or not to invest in an R&D project and those that invest invent a component with given probability.
- IV. Successful inventors simultaneously decideto join or not to join the PP or license independently, and then innovations are licensed by the PP and/or any independent inventors and royalties are paid by licensees.

- Innovation and licensing takes place in four stages:
- I. The antitrust rule is set and announced: Is the PP allowed to jointly license substitute innovations or not?
- II. The PP sets and announces a royalty redistribution rule consistent with the anti-trust rule.
- III. Each research firm decides to invest or not to invest in an R&D project and those that invest invent a component with given probability.
- IV. Successful inventors simultaneously decideto join or not to join the PP or license independently, and then innovations are licensed by the PP and/or any independent inventors and royalties are paid by licensees.

- Innovation and licensing takes place in four stages:
- I. The antitrust rule is set and announced: Is the PP allowed to jointly license substitute innovations or not?
- II. The PP sets and announces a royalty redistribution rule consistent with the anti-trust rule.
- III. Each research firm decides to invest or not to invest in an R&D project and those that invest invent a component with given probability.
- IV. Successful inventors simultaneously decideto join or not to join the PP or license independently, and then innovations are licensed by the PP and/or any independent inventors and royalties are paid by licensees.

- Innovation and licensing takes place in four stages:
- I. The antitrust rule is set and announced: Is the PP allowed to jointly license substitute innovations or not?
- II. The PP sets and announces a royalty redistribution rule consistent with the anti-trust rule.
- III. Each research firm decides to invest or not to invest in an R&D project and those that invest invent a component with given probability.
- IV. Successful inventors simultaneously decideto join or not to join the PP or license independently, and then innovations are licensed by the PP and/or any independent inventors and royalties are paid by licensees.

- Innovation and licensing takes place in four stages:
- I. The antitrust rule is set and announced: Is the PP allowed to jointly license substitute innovations or not?
- II. The PP sets and announces a royalty redistribution rule consistent with the anti-trust rule.
- III. Each research firm decides to invest or not to invest in an R&D project and those that invest invent a component with given probability.
- IV. Successful inventors simultaneously decideto join or not to join the PP or license independently, and then innovations are licensed by the PP and/or any independent inventors and royalties are paid by licensees.

Model Summary (for given antitrust and PP distribution rules)

Framework of Upstream R&D Analysis : Sequence of Events

Assumptions

Tragedy of Anticommons:

$$\pi_M \geq 2\pi_D$$
 and $W_0 \geq W_M \geq W_D$.

- π_M and W_M : Monopoly licensing profit and welfare.
- π_D and W_D : Duopoly licensing profit and welfare.
- W₀: Welfare when both components are licensed at zero price
- P(k, N): Probability that k substitute versions of a component are invented when N projects are undertaken for that component (probability of k success from N trials):

$$\sum_{k=0}^{N} P(k, N) = 1 \text{ and } \lim_{N \to \infty} P(k, N) = 0.$$

Probability that k firms succeed when N firms invest

Assumptions

Tragedy of Anticommons:

$$\pi_M \geq 2\pi_D$$
 and $W_0 \geq W_M \geq W_D$.

- π_M and W_M : Monopoly licensing profit and welfare.
- π_D and W_D : Duopoly licensing profit and welfare.
- W₀: Welfare when both components are licensed at zero price
- P(k, N): Probability that k substitute versions of a component are invented when N projects are undertaken for that component (probability of k success from N trials):

$$\sum_{k=0}^{N} P(k, N) = 1 \text{ and } \lim_{N \to \infty} P(k, N) = 0.$$

Probability that k firms succeed when N firms invest

Licensing Revenue and Antitrust Rules

- (π = total PP licensing revenues)
- Joint licensing of substitutes is not allowed:
 - Strict Antitrust Rule: PP randomly chooses at most one member of each component to license; royalties are shared equally between the chosen.
- Joint licensing of substitutes by the PP is allowed:
 - Equal: With *n* members, each receives π/n .
 - Unequal: If one component has a single inventor and the other component has n ≥ 2 substitute inventors, the single inventor receives zπ and the others receive (1 − z)π/n with z ∈ [0, 1]. Otherwise, equal shares.

Compare to No PP

Ex-ante and Ex-post

Framework of Upstream R&D Analysis : Sequence of Events

Possible ex-post outcomes: n_A and n_B (number of successful inventors of A and B) :

Cases \ Successful firms	n _A	n _B	
Case MM	1 1		
Case MC:	1 (2 or more) 2 or mor		
Case CC:	C: 2 or more 2 or more		

Who will join the PP ex-post?

- Competitive component inventors (cases MC & CC) join any kind of PP.
 - Competition among perfect substitutes drives royalties down to zero ⇒ joining is a weakly dominant strategy for them.
- Case MM: Both inventors join any kind of PP.
 - Avoid tragedy of anticommons .
- Case MC: Monopoly inventor joins a strict PP. (Assumption) Monopoly inventor does not join an equal PP but does join an unequal PP (z).

Possible ex-post outcomes: n_A and n_B (number of successful inventors of A and B) :

Cases \ Successful firms	n _A	n _B	
Case MM	1 1		
Case MC:	1 (2 or more)	2 or more (1)	
Case CC:	2 or more	2 or more	

- Who will join the PP ex-post?
 - Competitive component inventors (cases MC & CC) join any kind of PP.
 - Competition among perfect substitutes drives royalties down to zero ⇒ joining is a weakly dominant strategy for them.
 - Case MM: Both inventors join any kind of PP.
 - Avoid tragedy of anticommons.
 - Case MC: Monopoly inventor joins a strict PP. (Assumption) Monopoly inventor does not join an equal PP but does join an unequal PP (z).

Possible ex-post outcomes: n_A and n_B (number of successful inventors of A and B) :

Cases \ Successful firms	n _A	n _B	
Case MM	1 1		
Case MC:	1 (2 or more)	2 or more (1)	
Case CC:	2 or more	2 or more	

- Who will join the PP ex-post?
 - Competitive component inventors (cases MC & CC) join any kind of PP.
 - Competition among perfect substitutes drives royalties down to zero ⇒ joining is a weakly dominant strategy for them.
 - Case MM: Both inventors join any kind of PP.
 - Avoid tragedy of anticommons.
 - Case MC: Monopoly inventor joins a strict PP. (Assumption) Monopoly inventor does not join an equal PP but does join an unequal PP (z).

Possible ex-post outcomes: n_A and n_B (number of successful inventors of A and B) :

Cases \ Successful firms	n _A	n _B	
Case MM	1 1		
Case MC:	1 (2 or more)	2 or more (1)	
Case CC:	2 or more	2 or more	

- Who will join the PP ex-post?
 - Competitive component inventors (cases MC & CC) join any kind of PP.
 - Competition among perfect substitutes drives royalties down to zero ⇒ joining is a weakly dominant strategy for them.
 - Case MM: Both inventors join any kind of PP.
 - Avoid tragedy of anticommons.
 - Case MC: Monopoly inventor joins a strict PP. (Assumption) Monopoly inventor does not join an equal PP but does join an unequal PP (z).

Ex-post Profits

Ex-post equilibrium payoffs of successful inventors (Gains, Losses relative to no PP):

PP Type \ Profit	π_{MM}	π_{MC}^{M}	$\pi_{MC}^{C}(n)$	$\pi_{CC}(n_A, n_B)$
None	π_D	π_M	0	0
Equal	$\pi_M/2$	π_D	π_D/n	$\pi_{M}/(n_{A}+n_{B})$
Unequal	π _M /2	ZπM	$(1-z)\pi_M/n$	$\pi_{M}/(n_{A}+n_{B})$
Strict	π _M /2	π _M /2	$\frac{1}{n}\pi_M/2$	$\frac{1}{n_i}\pi_M/2; i = A, B$

Ex-post Welfare

Ex-post equilibrium welfare:

(Gains, Losses)

PP Type \ Welfare	W _{MM}	W _{MC}	W _{cc}
None	W_D	W_M	W_0
Equal	W _M	W _D	W _M
Unequal	W _M	W _M	W _M
Strict	W_M	W_M	W _M

 Ex-ante only probability of outcomes (MM, MC, or CC) known

From Ex-post to Ex-ante

Framework of Upstream R&D Analysis : Sequence of Events

R&D Technology

- Probability that a given research firm becomes a successful inventor depends on the number of firms that invest.
- ▶ There are *N* firms engaged in R&D for each component

36/55

Binomial, success prob. = 0.5

Upstream Innovation

- Ex-ante expected profit depends on ex-post profit and distribution of outcomes
- We consider two different upstream market structures.
- ▶ **Market 1**: There are $N \ge 2$ firms that can invest in A and $N \ge 2$ firms that can invest in B.
 - Potential ex-ante competition for both components.
 - Symmetric
- ► Market 2: There is only one firm that invests in A. N ≥ 2 firms can invest in B.
 - Ex-ante monopoly for innovation of component A. Competitive for component B.
 - Asymmetric

Upstream Innovation

- Ex-ante expected profit depends on ex-post profit and distribution of outcomes
- We consider two different upstream market structures.
- Market 1: There are $N \ge 2$ firms that can invest in A and $N \ge 2$ firms that can invest in B.
 - Potential ex-ante competition for both components.
 - Symmetric
- Market 2: There is only one firm that invests in A. N ≥ 2 firms can invest in B.
 - Ex-ante monopoly for innovation of component A. Competitive for component B.
 - Asymmetric

Market 1 Upstream Innovation

- Market 1: N projects are undertaken for each component
- Ex-ante competitive, symmetric
- Ex-ante expected profit and welfare:

$$\pi (N) = \frac{1}{N} P(1, N)^{2} \pi_{MM} + \frac{1}{N} P(1, N) \sum_{k=2}^{N} P(k, N) \left[\pi_{MC}^{M} + n \pi_{MC}^{C}(k) \right] + \sum_{m=2}^{N} \sum_{k=2}^{N} \frac{m}{N} P(m, N) P(k, N) \pi_{CC}(m, k) - c W(N) = P(1, N)^{2} W_{MM} + 2P(1, N) \sum_{k=2}^{N} P(k, N) W_{MC} + \sum_{m=2}^{N} \sum_{k=2}^{N} P(m, N) P(k, N) W_{CC} - 2Nc$$

<ロ> <同> <同> < 回> < 三> < 三> 三 三

Market 1 Result: Ex-ante Expected Profit and Welfare (Given *N*)

- Ex-ante, the expected profit gains always outweigh any losses:
 - $\pi^{UC}(N) = \pi^{SC}(N) \ge \pi^{EC}(N) \ge \pi^{NC}(N)$ for all $N \ge 1$.
- PP increases incentive to invest in upstream R&D.
- Welfare
 - When *N* is large, case CC likely and W_0 achieved.
 - ▶ When *N* is small, case MM likely and PP beneficial.
- Expected welfare with **no PP** is highest when N is large but lowest when N is small:
 - (i) $W^{UC}(N) = W^{SC}(N) \ge W^{EC}(N) \ge W^{NC}(N)$ for small N, (ii) $W^{NC}(N) \ge W^{UC}(N) = W^{SC}(N) \ge W^{EC}(N)$ for large N.
- Unequal or strict PP always outperforms equal: Unequal or strict are better able to get all successful inventors on board.

Market 1 Result: Ex-ante Expected Profit and Welfare (Given *N*)

- Ex-ante, the expected profit gains always outweigh any losses:
 - $\pi^{UC}(N) = \pi^{SC}(N) \ge \pi^{EC}(N) \ge \pi^{NC}(N)$ for all $N \ge 1$.
- PP increases incentive to invest in upstream R&D.
- Welfare
 - ▶ When *N* is large, case CC likely and *W*₀ achieved.
 - ▶ When *N* is small, case MM likely and PP beneficial.
- Expected welfare with **no PP** is highest when N is large but lowest when N is small:

(i) $W^{UC}(N) = W^{SC}(N) \ge W^{EC}(N) \ge W^{NC}(N)$ for small N, (ii) $W^{NC}(N) \ge W^{UC}(N) = W^{SC}(N) \ge W^{EC}(N)$ for large N.

Unequal or strict PP always outperforms equal: Unequal or strict are better able to get all successful inventors on board.

Market 1 Result: Ex-ante Expected Profit and Welfare (Given *N*)

- Ex-ante, the expected profit gains always outweigh any losses:
 - $\pi^{UC}(N) = \pi^{SC}(N) \ge \pi^{EC}(N) \ge \pi^{NC}(N)$ for all $N \ge 1$.
- PP increases incentive to invest in upstream R&D.
- Welfare
 - ▶ When *N* is large, case CC likely and *W*₀ achieved.
 - ▶ When *N* is small, case MM likely and PP beneficial.
- Expected welfare with **no PP** is highest when N is large but lowest when N is small:

(i) $W^{UC}(N) = W^{SC}(N) \ge W^{EC}(N) \ge W^{NC}(N)$ for small N, (ii) $W^{NC}(N) \ge W^{UC}(N) = W^{SC}(N) \ge W^{EC}(N)$ for large N.

Unequal or strict PP always outperforms equal: Unequal or strict are better able to get all successful inventors on board.

Simulation with Binomial Upstream R&D Technology (Determination of *N*)

Linear demand for licenses: Q = 100 - ρ gives parameter values:

Parameter	π_M	π_D	W_0	W_M	W_D
Value	<u>100</u> 4	<u>100</u> 9	50	<u>75</u> 2	<u>250</u> 9

- Assume P(k, N) is binomial; σ is success prob. of each project.
- Other parameters: z, c (market 1), c_A and c_B (market 2).
- Given parameter values, use numerical search to find equilibrium value of N under each PP type.
 - Equilibrium condition: Highest *N* where $\pi(N) \ge 0$ and $\pi(N+1) < 0$.

Simulation with Binomial Upstream R&D Technology (Determination of *N*)

Linear demand for licenses: Q = 100 - ρ gives parameter values:

Parameter	π_M	π_D	W_0	W_M	W_D
Value	<u>100</u> 4	<u>100</u> 9	50	<u>75</u> 2	<u>250</u> 9

- Assume P(k, N) is binomial; σ is success prob. of each project.
- Other parameters: z, c (market 1), c_A and c_B (market 2).
- Given parameter values, use numerical search to find equilibrium value of N under each PP type.
 - Equilibrium condition: Highest *N* where $\pi(N) \ge 0$ and $\pi(N+1) < 0$.

Market 1 Ex-ante Profit & Welfare and Equilibrium Investment by Simulation

Simulation for c = 2.5 and σ = 0.7 (symmetry makes value of z irrelevant):

- ▶ PP stimulates investment but may reduce welfare.
 - Equilibrium investment may increase too much once R&D costs are taken into account.

Market 2 of Upstream Innovation

- Market 2: Firm A has the unique ability to develop component A ; Development of component B is as before
- Asymmetric firms, Firm A is a monopolist
- ► Case CC is no longer possible.
- Firm profits when *N* projects undertaken for component B:

$$\pi_{A}(N) = P(1, N) \pi_{MM} + \sum_{k=2}^{N} P(k, N) \pi_{MC}^{M} - c_{A}$$
$$\pi_{B}(N) = \frac{1}{N} P(1, N) \pi_{MM} + \sum_{k=2}^{N} \frac{n}{N} P(k, N) \pi_{MC}^{C}(n) - c_{B}$$

Market 2 of Upstream Innovation

- Market 2: Firm A has the unique ability to develop component A ; Development of component B is as before
- Asymmetric firms, Firm A is a monopolist
- ► Case CC is no longer possible.
- Firm profits when N projects undertaken for component B:

$$\pi_{A}(N) = P(1, N) \pi_{MM} + \sum_{k=2}^{N} P(k, N) \pi_{MC}^{M} - c_{A}$$
$$\pi_{B}(N) = \frac{1}{N} P(1, N) \pi_{MM} + \sum_{k=2}^{N} \frac{n}{N} P(k, N) \pi_{MC}^{C}(n) - c_{B}$$
Market 2 Results: Ex-ante Expected Profits and Welfare (Given *N*)

Firm A prefers

- No PP when N is large
- Unequal PP when N is small.
- ► Component B firm , for any given N,
 - Always better off under either an equal or unequal PP compared to no PP.
 - Such a firm is better off under an unequal PP compared to an equal PP if $z \le 1 \pi_D / \pi_M$.
- ▶ Welfare: Unequal or strict PP best for all *N*. Equal PP performs better than no PP for sufficiently low *N*.

Market 2 Results: Ex-ante Expected Profits and Welfare (Given *N*)

Firm A prefers

- ▶ No PP when *N* is large
- Unequal PP when N is small.
- ► Component B firm , for any given N,
 - Always better off under either an equal or unequal PP compared to no PP.
 - Such a firm is better off under an unequal PP compared to an equal PP if $z \le 1 \pi_D / \pi_M$.
- Welfare: Unequal or strict PP best for all N. Equal PP performs better than no PP for sufficiently low N.

Market 2 Upstream R&D Incentives

PP's effect depends on firm (ex-ante market structure)

- Increase the incentives of competitive research firms to invest, but
- May reduce the incentive of monopolist (unique ability).
- PP's effect differ by firm and by ex-ante and ex-post.
 - Ex-post, firm A prefers a high value of z under an unequal PP, but this reduces the payoff of component B firms.
 - Ex-ante, firm A may want to choose a lower value of z to give incentive to B firms to invest.
 - Or, ex-ante, firm A may prefer not to have a strict anti-trust rule even though this facilitates collusion among B firms, to give them an incentive to invest.

Market 2 Upstream R&D Incentives

PP's effect depends on firm (ex-ante market structure)

- Increase the incentives of competitive research firms to invest, but
- May reduce the incentive of monopolist (unique ability).
- PP's effect differ by firm and by ex-ante and ex-post.
 - Ex-post, firm A prefers a high value of z under an unequal PP, but this reduces the payoff of component B firms.
 - Ex-ante, firm A may want to choose a lower value of z to give incentive to B firms to invest.
 - Or, ex-ante, firm A may prefer not to have a strict anti-trust rule even though this facilitates collusion among B firms, to give them an incentive to invest.

Market 2: Ex-ante Profit & Welfare and Equilibrium Investment

Single simulation of market 2, for c_A = 8, c_B = 1.3, σ = 0.5 and z = 0.75:

Interaction between Technology and Distribution Rule by Simulation

Effect of changing z in an unequal PP on equilibrium expected profits of firm A and expected welfare:

- Level of z affects equilibrium investment level of component B firms.
- PP licensing revenue distribution policies need to be related to the innovation environment.

53/55

Conclusion

- PP can generate both ex-post and ex-ante gains and losses to welfare and profits of research firms.
- PP generally stimulate investment in upstream R&D except possibly by inventors who have unique abilities.
- Unequal PP redistribution is less likely to lead to welfare losses but not always.
- Likely conflict between existing and potential inventors regarding PP support.
- PP design and royalty distribution rule needs to reflect conditions of the innovation environment.

Conclusion

- PP can generate both ex-post and ex-ante gains and losses to welfare and profits of research firms.
- PP generally stimulate investment in upstream R&D except possibly by inventors who have unique abilities.
- Unequal PP redistribution is less likely to lead to welfare losses but not always.
- Likely conflict between existing and potential inventors regarding PP support.
- PP design and royalty distribution rule needs to reflect conditions of the innovation environment.

References (1)

- R. Aoki and S. Nagaoka, "The Consortium Standard and Patent Pools", *The Economic Review*, 55(4):346-356, 2004.
- R. Aoki and S. Nagaoka, "Coalition Formation for a Consortium Standard Through a Standard Body and a Patent Pool: Theory and Evidence from MPEG2, DVD and 3G", Institute of Innovation Research Working Paper WP#05-01, 2005.

http://www.iir.hit-u.ac.jp/file/WP05-01aoki,%20nagaoka.pdf

References (2)

- R. Aoki, "Access to genetic patents and clearing models – Economic Perspective". In van Overwalle, G. (ed.), *Gene Patents and Clearing Models: From Concepts to Cases*. Cambridge University Press, 350-362,2009.
- R.Aoki and A.Schiff, "Collective Rights Organizations and Upstream R&D Investment", CIS Discussion Paper No.457, 2009.

http://www.ier.hit-u.ac.jp/pie/stage2/Japanese/d_p/dp2009/dp457/text.pdf